如图所示,在三角形ABC中,BD,CE相交于O,F,G分别为OB,OC的中点.是说明四边形DEFG是平行四边形

问题描述:

如图所示,在三角形ABC中,BD,CE相交于O,F,G分别为OB,OC的中点.是说明四边形DEFG是平行四边形
我个人认为这道题少条件了

BD、CE是中线,则结论就成立.
证明:DE是ΔABC的中位线,∴DE∥AB,且DE=1/2AB,
FG是ΔOAB的中位线,∴FG∥AB,且FG=1/2AB
∴DE∥FG,且DE=FG
∴四边形DEFG是平行四边形.但题目上没有BD、CE是中线呀如果没有这个条件,结论不成立。谢了