若函数f(x)满足f(x+1)=x2-2x,则f(2)=_.

问题描述:

若函数f(x)满足f(x+1)=x2-2x,则f(2)=______.

解法一:
∵函数f(x)满足:f(x+1)=x2-2x,
令x+1=2,则x=1,
f(2)=12-2×1=-1.
解法二:
∵函数f(x)满足:
f(x+1)=x2-2x=x2+2x+1-4(x+1)+3=(x+1)2-4(x+1)+3,
∴f(x)=x2-4x+3,
f(2)=22-4×2+3=-1.
解法三:
∵函数f(x)满足:
f(x+1)=x2-2x
仅t=x+1,则x=t-1
则f(t)=(t-1)2-2(t-1)=t2-4t+3
∴f(x)=x2-4x+3,
f(2)=22-4×2+3=-1.
故答案为:-1