在同一平面上把三边分别为BC=3,AC=4,AB=5的△ABC沿最长边AB翻折,得到△ABC′,则CC′的长等于_.

问题描述:

在同一平面上把三边分别为BC=3,AC=4,AB=5的△ABC沿最长边AB翻折,得到△ABC′,则CC′的长等于______.

先画出图形如下所示,
∵32+42=52,即:BC2+AC2=AB2
∴△ABC是直角三角形,斜边是AB,
由对称的性质可知:AB垂直且平分CC′,
设AB交CC′于D,则D是垂足,
∴CD=C′D,CC′=2CD;
∵△ACD∽△ABC,

CD
BC
=
AC
AB

∴CD=
BC×AC
AB
=
3×4
5
=
12
5

∴CC′=2CD=
2×12
5
=
24
5

故答案为:
24
5