如图所示,点E,F在正方形ABCD的边BC,CD上,AE,BF相交于点G,BE=CF,求证:(1)AE=BF;(2)AE⊥BF.

问题描述:

如图所示,点E,F在正方形ABCD的边BC,CD上,AE,BF相交于点G,BE=CF,求证:(1)AE=BF;(2)AE⊥BF.

证明:(1)∵四边形ABCD是正方形,
∴AB=BC,∠ABE=∠BCF=90°.
∵BE=CF,
∴△ABE≌△BCF.
∴AE=BF.
(2)∵∠BAE=∠CBF,∠BAE+∠AEB=90°,
∴∠CBF+∠AEB=90°.
∴∠BGE=90°.
∴AE⊥BF.