高数的一道微分方程题目:一曲线过点(2,3),其在两坐标轴间任意切线段均被切点平分,求该曲线的方程.
问题描述:
高数的一道微分方程题目:一曲线过点(2,3),其在两坐标轴间任意切线段均被切点平分,求该曲线的方程.
答
设切线L与曲线切点为P=(x,y),在x和y轴上交点分别为A和B,
因为P为AB的中点,所以A=(2x,0),B=(0,2y).
根据导数的几何意义(切线L的斜率),得到 dy/dx=(2y-0)/(0-2x)=-y/x.
分离变量 dy/y=-dx/x,
积分 lny=-lnx+lnC
得通解 y=C/x
将初始条件 x=2,y=3 代入,得 C=6,
所求曲线就是特解 y=6/x.
希望对你有所帮助 还望采纳~~