求证:当n为正整数时.n的立方减n必是6的倍数

问题描述:

求证:当n为正整数时.n的立方减n必是6的倍数

n^3-n=n(n^2-1)=n(n+1)(n-1)就是(n-1)*n*(n+1)看出来了吗?连续的三个数相乘的结果肯定是6的倍数.因为这三个数中一定有至少一个是2的倍数,有一个是3的倍数.结果一定是6的倍数.当然我们不能这样说,如果我们这样告诉别...