已知函数f(x)=x-a/x-(a+1)lnx(属于R).(1)当0

问题描述:

已知函数f(x)=x-a/x-(a+1)lnx(属于R).(1)当0

1.
f'(x)=1+a/x^2-(a+1)/x=[x^2-(a+1)x+a]/x^2=[(x-1)(x-a)]/x^2,x>0,0=0,且f'(x)不恒为0,得到f(x)单调增区间为(0,+∞)
当00恒成立
整理即a+(a+1)xlnx≥0,x>0恒成立
注意到a=-1时,上式显然不成立,所以a≠-1
该恒成立问题等价于ming(x)≥0,x>0其中g(x)=(a+1)xlnx+a,x>0
求导并令g'(x)=(a+1)(1+lnx)=0,得到x=1/e,
i)当a>-1时,有x∈(0,1/e),g'(x)