如图,在三角形ABC中,点O是AC边上一个动点
问题描述:
如图,在三角形ABC中,点O是AC边上一个动点
在三角形ABC中,点O是AC边上一动点,过点O做直线MN//BC,设MN交角BCA内角平分线于E,外角平分线于点F
三角形ABC中,O是AC上一个动点,过O做直线MN//BC,设MN交
答
在BC的延长线上任取一点G.
∵MN∥BC,∴∠OEC=∠BCE、∠OFC=∠GCF, 又∠OCE=∠BCE、∠OCF=∠GCF,
∴∠OEC=∠OCE、∠OFC=∠OCF,∴EO=CO、OF=CO,∴EO=OF.
当O为AC的中点时,AECF为平行四边形. 证明如下:
由第一个问题的结论,有:EO=OF,又AO=CO,∴AECF是平行四边形.[对角线互相平分]
∴当O运动到AC的中点时,四边形AECF是平行四边形.
∵AECF是正方形, ∴AC=√2AE、∠ACE=45°.
∵∠BCE=∠ACE, ∴∠ACB=2∠ACE=90°.
又AE/BC=√6/2, ∴AC/BC=√2AE/BC=√3, ∴tan∠B=AC/BC=√3, ∴此时∠B=60°.
采纳我!