求过A(2,1)和直线x-y-1=0相切且圆心在直线y=-2x上的圆的方程

问题描述:

求过A(2,1)和直线x-y-1=0相切且圆心在直线y=-2x上的圆的方程

圆心在直线y=-2x上,所以可设圆心为(a,-2a)设圆方程为(x-a)^2+(y+2a)^2=r^2圆过点A(2,-1),所以(2-a)^2+(-1+2a)^2=r^2化简得5a^2-8a+5=r^2(方程一)圆与直线x-y-1=0相切所以圆心(a,-2a)到直线x-y-1=0的距离...亲,过的是(2,1)。。。