sin²A+sin²B=cos²C
问题描述:
sin²A+sin²B=cos²C
答
sin²A+sin²B=cos²C
(1-cos2A)/2+(1-cos2B)/2=1-sin^2C
cos2A+cos2B=2sin^2C
2cos(A+B)*cos(A-B)=2sin^2C
-sinC*cos(A-B)=sin^2C
cos(A-B)=-sinC sinC>0
cos(A-B)π/2
所以A或B中有一个为钝角
是钝角三角形