如图,△ABC为等边三角形,∠ABC、∠ACB的平分线相交于点O,BO,CO的垂直平分线交BC于点E和F.
问题描述:
如图,△ABC为等边三角形,∠ABC、∠ACB的平分线相交于点O,BO,CO的垂直平分线交BC于点E和F.
如图,△ABC为等边三角形,∠ABC、∠ACB的平分线相交于点O,BO,CO的垂直平分线交BC于点E和F,垂足分别为M,N.求证:BE=EF=FC.
答
证明:连接OE,OF
在等边三角形ABC中.
∵∠B、∠C的平分线交于点O,OB和OC的垂直平分线交BC于E、F,
∴∠OBC=∠OCB=30°,OE=BE,OF=FC.
∴∠OEF=60°,∠OFE=60°.
∴OE=OF=EF.
∴BE=EF=FC.