已知二次函数y=x2+mx+m-5,(1)求证:不论m取何值时,抛物线总与x轴有两个交点;(2)求当m取何值时,抛物线与x轴两交点之间的距离最短.

问题描述:

已知二次函数y=x2+mx+m-5,
(1)求证:不论m取何值时,抛物线总与x轴有两个交点;
(2)求当m取何值时,抛物线与x轴两交点之间的距离最短.

(1)根据b2-4ac与0的大小关系来判断二次函数与x轴交点的个数,即m2-4×1×(m-5)=m2-4m+20=(m-2)2+16>0,所以抛物线总与x轴有两个交点;(2)设函数与x轴两个交点的值为x1,x2,且x2>x1,x1+x2=-m,且x1•x2=m...
答案解析:(1)根据b2-4ac与0的大小关系来判断二次函数与x轴交点的个数,即m2-4(m-5)是否大于0,算出其取值范围即可;
(2)设函数与x轴两个交点的值为x1,x2,且x2>x1,然后可根据函数两个值的和等于-m,两个值的积等于m-5算出x2-x1的值,最后求出其最小值即可.
考试点:抛物线与x轴的交点.


知识点:本题主要考查对于b2-4ac与0的等量关系来判断二次函数与x轴交点的个数的判定,以及对于二次函数性质的掌握.