已知a,b,c均大于1,若loga x=2,logb x=3,logabc x=12,求logc x

问题描述:

已知a,b,c均大于1,若loga x=2,logb x=3,logabc x=12,求logc x

loga x=2,即:a^2=x ,则 (a^2)^6=a^12=x^6
logb x=3, 即:b^3=x ,则 (b^3)^4=b^12=x^4
logabc x=12 ,即:(abc)^12=x,则: (a^12)(b^12)(c^12)=x
(x^6)(x^4)(c^12)=(x^10)(c^12)=x
c^12=x^(-9)
c=x^(-3/4)
logx c =-3/4
logc x = 1/ logx c=-4/3