f(x)在[0,a]上连续,且在(0,a)内可导,f(a)=0,证明存在&属于(0,a)使f(&)+&f'(&)=0
问题描述:
f(x)在[0,a]上连续,且在(0,a)内可导,f(a)=0,证明存在&属于(0,a)使f(&)+&f'(&)=0
答
构造函数F(x)=xf(x)
F(x)在[0,a]满足罗尔定理的条件
根据罗尔定理易得结论
答
F(x)=xf(x),F(0)=F(a)=0,Rolle中值定理得结论。
答
构造函数g(x)=xf(x)
则g(0)=0
g(a)=af(a)=0
所以在(0,a)内存在一点&,使得g'(&)=0
g'(&)=f(&)+&f'(&)=0
得证