设tana=根号3(1+m),tan(-b)=跟号3(tanatanb+m),且a,b为锐角,求a+b的值
问题描述:
设tana=根号3(1+m),tan(-b)=跟号3(tanatanb+m),且a,b为锐角,求a+b的值
答
∵tana=√3(1+m),tan(-b)=√3(tanatanb+m),两式相减:
tana-(-tanb)=tana+tanb=√3(1-tanatanb)
∴tan(a+b)=(tana+tanb)/(1-tanatanb)=√3
又a、b为锐角
∴a+b=π/3