设函数f(x)=(sinωx+cosωx)^2+2cosωx^2-2 (ω>2)的最小正周期为2π/3 (1)求ω的值
问题描述:
设函数f(x)=(sinωx+cosωx)^2+2cosωx^2-2 (ω>2)的最小正周期为2π/3 (1)求ω的值
(2)若把函数y=f(x)的图象向右平移π/2个单位长度,得到了函数y=g(x)的图象,求函数y=g(x),x属于[-π/3,π/12]的值域
答
1.f(x)=(sinωx+cosωx)^2+2cosωx^2-2 (ω>2)= 1+ sin(2ωx) + cos(2ωx) - 1= √2 sin(2ωx + π /4) 2π / (2ω) = 2π/3 => ω = 3/22.g(x) =√ 2 sin(2ωx +π/4 - π/2) =√ 2 sin(3x -π/4 )x∈ [-π/3,π/1...