已知x的m次方=9,x的n次方=8,x的k次方=4,求x的m+2k+3n次方的值

问题描述:

已知x的m次方=9,x的n次方=8,x的k次方=4,求x的m+2k+3n次方的值

x^(m+2k+3n)=x^m * (x^k)^2 * (x^n)^3=9 * 4^2 * 8^3=73728

x^(m+2k+3n)
=x^m*x^2k*x^3n 同底数幂相乘的逆运算
=x^m*(x^k)^2*(x^n)^3 幂得乘方的逆运算
=9*4^2*8^3
=9x16x512
=73728

x^(m+2k+3n)
=x^m*x^2k*x^3n
=x^m*(x^k)^2*(x^n)^3
=9*4^2*8^3
=9x16x512
=73728

x^m=9
x^n=8
x^k=4
x^(m+2k+3n)
=x^m*x^2k*x^3n
=9*16*128
=73728