一元二次方程kx2-(2k-1)x+k+2=0,当k为何值时,方程有两个不相等的实数根?
问题描述:
一元二次方程kx2-(2k-1)x+k+2=0,当k为何值时,方程有两个不相等的实数根?
答
∵一元二次方程kx2-(2k-1)x+k+2=0有两个不相等的实数根,
∴k≠0,且△>0,即△=(2k-1)2-4k(k+2)=1-12k>0,解此不等式得k<
,1 12
所以k的取值范围为k<
且k≠0.1 12
故k为k<
且k≠0时,方程有两个不相等的实数根.1 12
答案解析:要使一元二次方程kx2-(2k-1)x+k+2=0有两个不相等的实数根,则要满足k≠0,且△>0,即△=(2k-1)2-4k(k+2)=1-12k>0,解两个不等式即可得到k的取值范围.
考试点:根的判别式.
知识点:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.