已知向量a=(sinωx,根号下3sinωx),b=(sinωx,cosωx),ω>0,f(x)=向量a·向量b,且f(x)的最小正周期为π

问题描述:

已知向量a=(sinωx,根号下3sinωx),b=(sinωx,cosωx),ω>0,f(x)=向量a·向量b,且f(x)的最小正周期为π
(1)求f(x)的单调递减区间
(2)求f(x)在区间[0 ,3分之2π]上的取值范围

f(x)=a*b=sin²ωx+√3sinωxcosωx
=(√3/2)sin2ωx-(1/2)[1-cos2ωx]
=(√3/2)sin2ωx+(1/2)cos2ωx-(1/2)
=sin(2ωx+π/6)-(1/2)
1、最小正周期是2π/|2ω|=π,得:ω=1;
2、f(x)=sin(2x+π/6)-(1/2),减区间是:
2kπ+π/2≤2x+π/6≤2kπ+3π/2,得:
kπ+π/6≤x≤kπ+2π/3,则减区间是:[kπ+π/6,kπ+2π/3],其中k∈Z
3、x∈[0,2π/3]
则:2x+π/6∈[π/6,3π/2]
得:sin(2x+π/6)∈[-1,1]
则:f(x)∈[-3/2,1/2]