已知:x+y=1,xy=-1/2,求:(x+y)²(x-y)+2y²(x+y)的值.

问题描述:

已知:x+y=1,xy=-1/2,求:(x+y)²(x-y)+2y²(x+y)的值.

因为:x+y=1
所以:(x+y)^2=1
即:x^2+y^2+2xy=1
因为xy=-1/2
所以:x^2+y^2=2
所以:(x+y)^2(x-y)+2y^2(x+y)
=(x+y)(x^2-y^2+2y^2)
=(x+y)(x^2+y^2)
=1*2=2
所以所求代数式的值是2

等于2

(x+y)²(x-y)+2y²(x+y)=(x+y)[(x+y)(x-y)+2y²]=(x+y)(x²-y²+2y²)=(x+y)(x²+y²)=x²+y²=(x+y)²-2xy=1-2(-1/2)=1+1=2

(x+y)²(x-y)+2y²(x+y)
=(x+y)(x²-y²+2y²)
=(x+y)(x²+y²)
=(x+y)[(x+y)²-2xy]
=1×【1-2×(-1/2)】
=2