f(x)=2sinx+1,(1)设常数ω>0,若y=f(ωx)在区间【-π/2,2π/3】上是增函数,求ω的取值范围

问题描述:

f(x)=2sinx+1,(1)设常数ω>0,若y=f(ωx)在区间【-π/2,2π/3】上是增函数,求ω的取值范围
(2)设集合A={π/6

(1)解析:∵f(x)=2sinx+1F(ωx)=2sinωx+1∵在区间[-π/2,2π/3]上是增函数∵函数f(x)初相为0∴最小值点在Y轴左,最大值点在Y轴右,二者与Y轴之距相等函数f(x)最小值点:ωx=2kπ-π/2==>x=2kπ/ω-π/(2ω)∴-π/(2...