如图1,正方形ABCD和正方形QMNP,∠M=∠B,M是正方形ABCD的对称中心,MN交AB于F,QM交AD于E. (1)求证:ME=MF. (2)如图2,若将原题中的“正方形”改为“菱形”,其他条件不变,探索线段ME

问题描述:

如图1,正方形ABCD和正方形QMNP,∠M=∠B,M是正方形ABCD的对称中心,MN交AB于F,QM交AD于E.

(1)求证:ME=MF.
(2)如图2,若将原题中的“正方形”改为“菱形”,其他条件不变,探索线段ME与线段MF的关系,并加以证明.
(3)如图3,若将原题中的“正方形”改为“矩形”,且AB=mBC,其他条件不变,探索线段ME与线段MF的关系,并说明理
(4)根据前面的探索和图4,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题;若不能,请说明理由.

证明:(1)过点M作MH⊥AB于H,MG⊥AD于G,连接AM,∵M是正方形ABCD的对称中心,∴M是正方形ABCD对角线的交点,∴AM平分∠BAD,∴MH=MG在正方形ABCD中,∠A=90°,∵∠MHA=∠MGA=90°∴∠HMG=90°,在正方形QMNP,∠...