(1/3)lgx(n+1)=1+lgxn 即:lgXn+1=lg10Xn即:Xn+1=10Xn,所以数列{Xn}为等比数列,公比为10 x1+
问题描述:
(1/3)lgx(n+1)=1+lgxn 即:lgXn+1=lg10Xn即:Xn+1=10Xn,所以数列{Xn}为等比数列,公比为10 x1+
答
lgx(n+1)=1+lgxn
x(n+1)=10xn
公比为10
x1+x1q+x1q^2+……+x1q^99=100
x101+x102+x103+.x200=x1q^100+x1q^101+……+x1q^199
=q^100(x1+x1q+x1q^2+……+x1q^99)=10^100*100=10^102
原式=102