已知函数f(x)是定义在(0,+∞)上的减函数,且满足f(xy)=f(x)+f(y),f(1/3)=1.求若f(2-x)<2,则正数x的取值范
问题描述:
已知函数f(x)是定义在(0,+∞)上的减函数,且满足f(xy)=f(x)+f(y),f(1/3)=1.求若f(2-x)<2,则正数x的取值范
已知函数f(x)是定义在(0,+∞)上的减函数,且满足f(xy)=f(x)+f(y),f(1/3)=1.求若f(2-x)<2则正数x的取值范围
答
f(1/3)=1 f(1/3)+f(1/3)=2 f(1/9)=2.
f(x)是定义在(0,+∞)上的减函数
f(2-x)<2=f(1/9),
2-x>1/9且 x>0
解得0