已知y=f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R,都满足:f(a•b)=af(b)+bf(a).(1)求f(1)的值;(2)判断y=f(x)的奇偶性,并证明你的结论.

问题描述:

已知y=f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R,都满足:f(a•b)=af(b)+bf(a).
(1)求f(1)的值;
(2)判断y=f(x)的奇偶性,并证明你的结论.

(1)由题意令a=b=1,可得f(1)=f(1)+f(1),∴f(1)=0
(2)y=f(x)是奇函数,下面证明:
令a=b=-1,可得f(1)=-f(-1)-f(-1),所以f(-1)=0;
令a=x,b=-1,所以f(-x)=x f(-1)-f(x)=-f(x);
∴y=f(x)是奇函数.
答案解析:(1)令a=b=1,可得f(1)=f(1)+f(1),解之可得f(1)=0;
(2)令a=b=-1,代入可得f(-1)=0,再令a=x,b=-1,代入可得f(-x)=x f(-1)-f(x)=-f(x),由奇函数的定义可得.
考试点:函数奇偶性的判断;抽象函数及其应用;函数的值.
知识点:本题考查抽象函数奇偶性的判断,准确赋值是解决问题的关键,属中档题.