利用极坐标计算∫∫sin√x²+y² dxdy,其中D={(x,y)/∏²≤x²+y²≤4∏²}
问题描述:
利用极坐标计算
∫∫sin√x²+y² dxdy,
其中D={(x,y)/∏²≤x²+y²≤4∏²}
答
Order x = Rcos (t), y = Rsin (t), 0 ≤ t ≤ 2 π, R1 ≤ R ≤ R2, dxdy = RdtdR, ∫ sin (R) RdR = ∫ Rd (-cos (R)) =- Rcos (R) + ∫ cos (R) dR
答
令x=Rcos(t),y=Rsin(t),0≤t≤2π,R1≤R≤R2,dxdy=RdtdR,
∫sin(R)RdR=∫Rd(-cos(R))=-Rcos(R)+∫cos(R)dR