如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.PO=2,AB=2,求证: (1)PA∥平面BDE; (2)平面PAC⊥平面BDE.
问题描述:
如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.PO=
,AB=2,求证:
2
(1)PA∥平面BDE;
(2)平面PAC⊥平面BDE.
答
证明(1)∵O是AC的中点,E是PC的中点,
∴OE∥AP,
又∵OE⊂平面BDE,PA⊄平面BDE,
∴PA∥平面BDE
(2)∵PO⊥底面ABCD,
∴PO⊥BD,
又∵AC⊥BD,且AC∩PO=O
∴BD⊥平面PAC,
而BD⊂平面BDE,
∴平面PAC⊥平面BDE.