已知:在△ABC中,∠CAB和∠ABC的平分线AD、BE交于点P. (1)当△ABC为等边三角形(如图1)时,求证:EP=DP; (2)当△ABC不是等边三角形,但∠ACB=60°(如图2)时,(2)中的结论是否还成立
问题描述:
已知:在△ABC中,∠CAB和∠ABC的平分线AD、BE交于点P.
(1)当△ABC为等边三角形(如图1)时,求证:EP=DP;
(2)当△ABC不是等边三角形,但∠ACB=60°(如图2)时,(2)中的结论是否还成立?若成立,请证明;若不成立,请说明理由.
答
证明:(1)∵△ABC为等边三角形,AD平分∠CAB,∴PD⊥BC,(1分)
同理,PE⊥AC,
作PH⊥AB于H,(1分)
∵AD平分∠CAB,PE⊥AC,∴PE=PH(1分)
同理PD=PH
∴PD=PE(1分)
(2)EP=DP依然成立.(1分)
证明:不妨设∠CAB<∠CBA
作PH⊥AC于H,PM⊥CB于M,PQ⊥AB于Q,
则点H在线段CE上,点M在线段BD上
∵∠CAB和∠ACB的平分线AD、BE交于点P,∴PH=PQ=PM,(1分)
∵∠ACB+∠CAB+∠ABC=180°,∠ACB=60°,
∴∠CAB+∠ABC=120°,(1分)
∵AD、BE分别平分∠CAB、∠ABC,
∴∠PAB+∠PBA=60°,(1分)
∵∠CEP=∠CAP+∠PAB+∠PBA=∠CAP+60°,
∠ADB=∠CAP+∠ACD=∠CAP+60°,
∴∠CEP=∠ADB,(1分)
在△PHE和△PMD中,∠HEP=∠MDP,∠EHP=∠DMP=90°,PH=PM,
∴△PHE≌△PMD,(1分)
∴PE=PD
(不同方法请相应给分)