求函数y=-[log以2为底的(x^2+2)]^2-log以1/4为底的(x^2+2)+5的值域
问题描述:
求函数y=-[log以2为底的(x^2+2)]^2-log以1/4为底的(x^2+2)+5的值域
答
y=-[log2 (x^2+2)]^2-log1/4 (x^2+2)+5
=-[log2 (x^2+2)]^2+log4 (x^2+2)+5
=-[log2 (x^2+2)]^2-1/2*log2 (x^2+2)+5
=-{[log2 (x^2+2)]^2-log2 (x^2+2) /2 +1/16}+5+1/16
=-[log2 (x^2+2)-1/4]^2+81/16
∵x^2>=0
x^2+2>=2
log2 (x^2+2)>=log2 2=1
∴log2 (x^2+2)不可能=1/4
log2 (x^2+2)-1/4>=3/4
[log2 (x^2+2)+1/4]^2>=9/16
-[log2 (x^2+2)+1/4]^2-[log2 (x^2+2)+1/4]^2+81/16所以值域是(-无穷大,4.5]
答
y=-[log₂(x^2+2)]²-log(1/4)(x^2+2)+5=-[log₂(x²+2)]²+1/2log₂(x^2+2)+5设t=log₂(x²+2)∵x²≥0,x²+2≥2∴t=log₂(x²+2)≥log₂2=1∴y=-t...