定义在R上的函数f(x)的导数f'(x)=kx+b,其中常数k>0,则函数f(x)在A (-无穷,+无穷]上递增 B [-b/k,+无穷)上递增C (-无穷,-b/k]上递增 D (-无穷,+无穷)上递减
问题描述:
定义在R上的函数f(x)的导数f'(x)=kx+b,其中常数k>0,则函数f(x)在
A (-无穷,+无穷]上递增 B [-b/k,+无穷)上递增
C (-无穷,-b/k]上递增 D (-无穷,+无穷)上递减
答
f'(x)=kx+b>0
x>-b/k
所以f(x)在[-b/k,+∞)上递增
选B
答
令f'(x)>0,则kx+b>0
∴kx>-b, x>-b/k(k>0,∴不等式不变号)
即当 x>-b/k时,f'(x)>0,此时函数f(x)单增
∴选B
不懂可追问,有帮助请采纳,谢谢!