因式分解(1)3x-12x2(2)x2-9x-10(3)x2-2xz+z2-4y2(4)25(m+n)2-4(m-n)2.
问题描述:
因式分解
(1)3x-12x2
(2)x2-9x-10
(3)x2-2xz+z2-4y2
(4)25(m+n)2-4(m-n)2.
答
(1)原式=3x(1-4x);
(2)原式=(x-10)(x+1);
(3)原式=(x-z)2-4y2=(x-z+2y)(x-z-2y);
(4)原式=【5(m+n)+2(m-n)】【5(m+n)-2(m-n)】
=(7m+3n)(3m+7n).
答案解析:(1)提公因式3x即可分解;
(2)利用十字相乘法即可分解;
(3)前边三项分成一组利用完全平方公式分解,然后利用平方差公式分解即可;
(5)利用平方差公式分解即可.
考试点:提公因式法与公式法的综合运用;因式分解-分组分解法.
知识点:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.