已知函数f(x)=ax2-2ax+2+b(a>0)在区间[2,3]上的值域为[2,5](Ⅰ)求a,b的值;(Ⅱ)若关于x的函数g(x)=f(x)-(m+1)x在区间[2,4]上为单调函数,求实数m的取值范围.

问题描述:

已知函数f(x)=ax2-2ax+2+b(a>0)在区间[2,3]上的值域为[2,5]
(Ⅰ)求a,b的值;
(Ⅱ)若关于x的函数g(x)=f(x)-(m+1)x在区间[2,4]上为单调函数,求实数m的取值范围.

(1)当a>0时,a=1,b=0
当a(2)m≤2或m≥6

(Ⅰ)∵a>0,∴所以抛物线开口向上且对称轴为x=1.∴函数f(x)在[2,3]上单调递增.由条件得f(2)=2f(3)=5,即2+b=23a+2+b=5,解得a=1,b=0. 故a=1,b=0.(Ⅱ)由(Ⅰ)知a=1,b=0.∴f(x)=x2-2x+2,从而...
答案解析:(Ⅰ)由f(x)的图象及对称轴可判断f(x)在[2,3]上递增,从而有f(2)=2,f(3)=5,联立即可解得a,b值;
(Ⅱ)由(Ⅰ)知g(x)=x2-(m+3)x+2.分g(x)在[2,4]上递增、递减两种情况讨论,可得其对称轴与区间的位置关系,由此可得到不等式,解出即可.
考试点:函数单调性的性质;二次函数的性质.
知识点:本题考查二次函数的单调性及其应用,考查数形结合思想及分类讨论思想,深刻理解“三个二次”间的关系是解决该类问题的基础.