一道关于高中椭圆的数学题
问题描述:
一道关于高中椭圆的数学题
P为椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的任意一点(异于顶点),椭圆短轴上两个端点分别是B1,B2.若直线PB1,PB2分别与X轴交于点M,N,求证:OM与ON的长度之积为一个定植.
答
设P点坐标(a*cos(t),b*sin(t))
列两个直线方程
求NM两点坐标
算OM*ON就可以了
回答补充:
解法都讲了,您还是自己动动手比直接抄个答案要好