若x是一元二次方程ax平方+bx+c=0(a≠0)的根,则判别式=b平方-4ac与平方式M=(2ax+b)平方的大小关系怎样?

问题描述:

若x是一元二次方程ax平方+bx+c=0(a≠0)的根,则判别式=b平方-4ac与平方式M=(2ax+b)平方的大小关系怎样?

∵ax2+bx+c=0,
∴ax2+bx=-c,
M=(2ax+b)2=4a2x2+4axb+b2=4a(ax2+bx)+b2=-4ac+b2=b2-4ac=N,
∴M与N的大小关系为M=N.

注意到,由一元二次方程的求根公式:
x=(-b±√△)/(2a)
即2ax=-b±√△
所以(2ax+b)^2=△
所以M=△