设两个一元二次方程ax2+2bx+1=0和cx2+2dx+1=0(其中a,b,c,d均为实数)满足a+c=2bd.求证:上述两个方程中至少有一个方程有实数根.

问题描述:

设两个一元二次方程ax2+2bx+1=0和cx2+2dx+1=0(其中a,b,c,d均为实数)满足a+c=2bd.求证:上述两个方程中至少有一个方程有实数根.

假设上述两个方程中都没有实数根.
则两个方程的判别式△1=4b2-4a<0,△2=4d2-4c<0,
即b2<a,d2<c,不等式两边同时相加得b2+d2<a+c,
∵a+c=2bd.
∴不等式等价为b2+d2<2bd,
这与b2+d2≥2bd矛盾,
故假设不成立,
即上述两个方程中至少有一个方程有实数根.
答案解析:利用反证法即可得到结论.
考试点:反证法的应用.
知识点:本题主要考查命题的推理和证明,利用反证法是解决本题的关键.