设无穷等差数列{an}的前n项和为Sn,(1)若首项a1=3/2,公差d=1,求满足Sk²=(Sk)²的正整数k,(2)求所有的无穷等差数列{an},使得对于一切正整数k都有Sk²=(Sk)²成立

问题描述:

设无穷等差数列{an}的前n项和为Sn,(1)若首项a1=3/2,公差d=1,求满足Sk²=(Sk)²的正整数k,
(2)求所有的无穷等差数列{an},使得对于一切正整数k都有Sk²=(Sk)²成立