以知{an}为无穷等差数列,其前n项和Sn,a1=3/2,d=1.若Sk^2=(Sk)^2成立,则K满足
问题描述:
以知{an}为无穷等差数列,其前n项和Sn,a1=3/2,d=1.若Sk^2=(Sk)^2成立,则K满足
过程
答
an=1/2+nsn= 1/2 *n + n(n+1)/2sk^2= 1/2* k^2 + k^2(k^2+1)/2(sk)^2=[1/2 *k + k(k+1)/2]^2若二者相等1/2 * k^2 + k^2(k^2+1)/2 = [1/2 *k +k (k+1)/2]^2约掉个k^21/2+ (k^2+1)/2 = [1/2+ (k+1)/2]^2( k+1 )^2+1 = ...