已知x>y,求证x³-y³>2x²y-2xy²

问题描述:

已知x>y,求证x³-y³>2x²y-2xy²

(x-y)^3=x^3-y^3-(2x²y-2xy²)
(x-y)^3>0

x³-y³-(2x²y-2xy²)=x³-y³-2xy(x-y)=(x-y)(x^2+xy+y^2)-2xy(x-y)=(x-y)(x^2-xy+y^2)x>y>=0,(x-y)(x^2-xy+y^2)=(x-y)[x(x-y)+y^2)]>0x>=0>y,(x-y)(x^2-xy+y^2)=(x-y)[x^2+x(-y)+y^2)]>0...