证明 limx^x(x趋近于0时)=1
问题描述:
证明 limx^x(x趋近于0时)=1
答
logx^x=xlogx,而limxlogx(x趋近于0)=0,故原式=1.
答
原式=lim(x->0)[e^(xlnx)]
=e^[lim(x->0)(xlnx)]
=e^[lim(x->0)(lnx/(1/x))]
=e^[lim(x->0)((1/x)/(-1/x²))] (∞/∞型极限,应用罗比达法则)
=e^[lim(x->0)(-x)]
=e^(0)
=1