已知数列{an}中,S1=1,前n项和Sn与通项an满足an=2Sn^2/(2Sn-(1))(n属于N,n大于等于2)(1)求证1/Sn是等差数列(2)求数列{an}的通项公式上面那个是2Sn-1,不是2S(n-1)
问题描述:
已知数列{an}中,S1=1,前n项和Sn与通项an满足an=2Sn^2/(2Sn-(1))(n属于N,n大于等于2)
(1)求证1/Sn是等差数列
(2)求数列{an}的通项公式
上面那个是2Sn-1,不是2S(n-1)
答
用an=Sn-Sn-1代入求出1/Sn-1/Sn-1=2
求出Sn后再求an
答
睇唔明个题目~~~an=2Sn^2/(2Sn-(1))
系an=2Sn^2/(2Sn-1) 定系an=2Sn^2/(2S(n-1))呢?
答
an=2*s²n/(2sn-1))
(sn-s(n-1))(2sn-1)=2s²n
2s²n-sn-2sns(n-1)+s(n-1)=2s²n
s(n-1)-sn=2sn*s(n-1)
1/sn-1/s(n-1)=2
s1=1,1/s1=1
1/Sn是以1为首项,公差为2的等差数列
1/sn=1+2(n-1)=2n-1
sn=1/(2n-1)
an=sn-s(n-1)
=1/(2n-1)-1/(2(n-1)-1)
=1/(2n-1)-1/(2n-3)
=(2n-3-2n+1)/(2n-1)(2n-3)
=-2/(4n²-7n+3)
答
用倒数法。