一质点沿半径为R的圆周运动,运动学方程为,其中v0,b都是常量.(1)求t时刻质点的加速度大小及方向;(2)在何时加速度大小等于b; (3)到加速度大小等于b时质点沿圆周运行的圈数.

问题描述:

一质点沿半径为R的圆周运动,运动学方程为,其中v0,b都是常量.(1)求t时刻质点的加速度大小及方向;(2)在何时加速度大小等于b; (3)到加速度大小等于b时质点沿圆周运行的圈数.

1.这道题没说是匀速圆周运动,所以考虑加速度的时候要考虑切向加速度at和法向加速度an,而at=dv/dt=-b an=v*2/R=[(vo-b*t)^2]/R,所以a=根下at^2+an^2,方向tanθ=an/at=b*R/(vo-b*t)^22.由第一问可以知道当an=0的时候...