1/2+1/3+2/3+1/4+2/4+3/4+1/5+2/5+3/5+4/5.+1/40+2/40+.+38/40+39/40=

问题描述:

1/2+1/3+2/3+1/4+2/4+3/4+1/5+2/5+3/5+4/5.+1/40+2/40+.+38/40+39/40=

(1/2)+(1/3+2/3)+(1/4+2/4+3/4)括号里当分母为n时=(n-1)/2 1/2+1/3+2/3+1/4+2/4+3/4+1/5+2/5+3/5+4/5........+1/40+2/40+......+38/40+39/40
=(1+2+...+40)/2-(1/2)×40
=40×41/4-20
=410-20
=390

首先来分析下(1/40+2/40+......+38/40+39/40),首尾相加1/40+39/40=1,2/40+38/40=1……19/40+21/40,20/40=1/2,所以(1/40+2/40+......+38/40+39/40)=19+1/2,
故原式=(0+1/2)+1+(1+1/2)+2+(2+1/2)+3+(3+1/2)+……+19+(19+1/2)
=20x1/2+2x(1+2+3+4+……19)
=10+2x10x19
=10+380
=390

1/2+1/3+2/3+1/4+2/4+3/4+1/5+2/5+3/5+4/5........+1/40+2/40+......+38/40+39/40=
1/2+2/2+3/2+.....+39/2=1/2(1+2+3+ ....+39)=39*40/4=390

1/n+2/n+3/n+....(n-1)/n=(1+2+3+....n-1)/n=(n-1)/2
1/2+1/3+2/3+1/4+2/4+3/4+……+......+38/40+39/40=
=1/2+(3-1)/2+(4-1)/2+.....+(40-1)/2
=(1+2+3......+39)/2

分组:(1/2)+(1/3+2/3)+(1/4+2/4+3/4)+...+(1/40+2/40+...+39/40)对于第n组,分母为n,分子依次为1到n-1,共n-1项.第n组的和an=(1+2+...+n-1)/n=n(n-1)/(2n)=(n-1)/2=n/2-1/21/2+1/3+2/3+1/4+2/4+3/4+1/5+2/5+3/5+4/5.+...

390