如果a-b=2+√3 a-c=4,求a²+b²+c²-ab-bc-ca的值
问题描述:
如果a-b=2+√3 a-c=4,求a²+b²+c²-ab-bc-ca的值
答
a-b=2+√3
a-c=4
则b-c=2-√3 (上两式相减)
a²+b²+c²-ab-bc-ca
=1/2(2a²+2b²+2c²-2ab-2bc-2ca)
=1/2[(a²-2ab+b²)+(b²-2bc+c²)+(a²-2ca+c²)]
=1/2[(a-b)²+(b-c)²+(a-c)²]
=1/2(4+4√3+3+4-4√3+3+16)
=15
)
答
b-c=2-√3
a²+b²+c²-ab-bc-ca
=1/2[(a-b)²+(b-c)²+(a-c)²]
=1/2(4+4√3+3+4-4√3+3+16)
=15
答
a-b=2+√3 a-c=4,相减b-c=2-√3原式上下乘2=(2a²+2b²+2c²-2ab-2bc-2ac)/2=[(a²-2ab+b²)+(b²-2bc+c²)+(c²-2ac+a²)]/2=[(a-b)²+(b-c)²+(a-c)²]/2=(7+4...