三角形ABC,O点是三角形ABC内一点.连结OB,OC证明:AB+AC>OC+OB
问题描述:
三角形ABC,O点是三角形ABC内一点.连结OB,OC证明:AB+AC>OC+OB
答
引用一位高手的答案
证明:延长BO,交AC于点D
由“三角形两边之差小于第三边”,可得
BD-AB<AD
OC-OD<CD
∵BD=OB+OD
∴OB+OD-AB<AD
OC-OD<CD
以上两式相加,得
OB-AB+OC<AD+CD
∴OB+OC-AB<AC,即AB+AC>OB+OC
答
证明:延长BO,交AC于点D
由“三角形两边之差小于第三边”,可得
BD-AB<AD
OC-OD<CD
∵BD=OB+OD
∴OB+OD-AB<AD
OC-OD<CD
以上两式相加,得
OB-AB+OC<AD+CD
∴OB+OC-AB<AC,即AB+AC>OB+OC