3OA+4OB+5OC=0,三角形ABC内接于园O,前面的OA都有符号向量的,圆半径是1,问向量OA乘以OB
问题描述:
3OA+4OB+5OC=0,三角形ABC内接于园O,前面的OA都有符号向量的,圆半径是1,问向量OA乘以OB
答
以O点为原点作XY坐标轴,设OA点坐标(X1,Y1),OB点(X2,Y2),OC点(X3,Y3)
X1^2+Y1^2=X2^2+Y2^2=X3^2+Y3^2,
3(X1)+4(X2)+5(X3)=0,3(Y1)+4(Y2)+5(Y3)=0
X3=[3(X1)+4(X2)]/5,Y3=[3(Y1)+4(Y2)]/5
X1^2+Y1^2=[3(X1)+4(X2)]^2/25+[3(Y1)+4(Y2)]^2/25
解得:24[(X1)(X2)+(Y1)(Y2)]=16[(X1^2+Y1^2)-(X2^2+Y2^2)]
得:[(X1)(X2)+(Y1)(Y2)]=0
向量OA乘以OB=X1*X2+Y1*Y2=0
答
3OA+4OB+5OC=0
OC=-(3/5OA+4/5OB)
OC^2=9/25OA^2+16/25OB^2+24/25OA*OB (圆半径是1,|OA|=|OB|=|OC|=1)
1=9/25+16/25+24/25OA*OB
24/25OA*OB=0
OA*OB=0