如图所示,设M是△ABC的重心,过M的直线分别交边AB,AC于P,Q两点,且APPB=m,AQQC=n,则1m+1n=______.
问题描述:
如图所示,设M是△ABC的重心,过M的直线分别交边AB,AC于P,Q两点,且
=m,AP PB
=n,则AQ QC
+1 m
=______.1 n
答
知识点:此题考查了重心的概念和性质,能够熟练运用平行线分线段成比例定理、平行线等分线段定理以及梯形的中位线定理.
分别过点B,C作BE∥AD,CF∥AD,交PQ于点E,F,则BE∥AD∥CF,
∵点D是BC的中点,
∴MD是梯形的中位线,
∴BE+CF=2MD,
∴
+1 m
=1 n
+PB AP
=CQ AQ
+BE AM
=CF AM
=BE+CF AM
=1.2MD AM
答案解析:根据三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.可以分别过点B,C作BE∥AD,CF∥AD,交PQ于点E,F,根据平行线等分线段定理和梯形中位线定理可得到两个等式,代入所求代数式整理即可得到答案.
考试点:平行线分线段成比例;三角形的重心;梯形中位线定理.
知识点:此题考查了重心的概念和性质,能够熟练运用平行线分线段成比例定理、平行线等分线段定理以及梯形的中位线定理.