(2+1)×(2^2+1)×(2^4+1)×(2^8+1)×(2^16+1)×(2^32+1)=2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)=(2^4-1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)=(2^8-1)(2^8+1)(2^16+1)(2^32+1)=(2^16-1)(2^16+1)(2^32+1)=(2^32-1)(2^32+1)=2^64-14x^2+kx+9是完全平方式,k=12或负12
问题描述:
(2+1)×(2^2+1)×(2^4+1)×(2^8+1)×(2^16+1)×(2^32+1)
=2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)
=(2^8-1)(2^8+1)(2^16+1)(2^32+1)
=(2^16-1)(2^16+1)(2^32+1)
=(2^32-1)(2^32+1)
=2^64-1
4x^2+kx+9是完全平方式,k=12或负12
答
第一题在原式前面乘以(2-1)然后再利用平方差公式
第二题因为是完全平方式 所以4x^2+kx+9=(2x±3)^2 所以k=±12