如图,P是等边△ABC外接圆BC上任意一点,求证:PA=PB+PC.

问题描述:

如图,P是等边△ABC外接圆

BC
上任意一点,求证:PA=PB+PC.

证明:在PA上截取PD=PC,∵AB=AC=BC,∴∠APB=∠APC=60°,∴△PCD为等边三角形,∴∠PCD=∠ACB=60°,CP=CD,∴∠PCD-∠DCB=∠ACB-∠DCB,即∠ACD=∠BCP,在△ACD和△BCP中,AC=BC ∠ACD=∠BCP CP=CD&...
答案解析:首先在PA上截取PD=PC,由△ABC是等边三角形,可得△PCD是等边三角形,继而可证明△ACD≌△BCP,则AD=PB,从而得出PA=PB+PC
考试点:圆周角定理;全等三角形的判定与性质;等边三角形的判定与性质.
知识点:此题考查了圆周角定理、等边三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.