点O是等边三角形ABC内一点,角AOB=110,角BOC=α,将三角形BOC绕点C按顺时针方向旋转点O是等边三角形ABC内一点,角AOB=110度,角BOC=α,将角形BOC绕点C按顺时针方向旋转60度,得三角形ADC,连接OD.1.求证三角形COD是等边三角形.2.当X=150度时,试判断三角形AOD的形状,并说明理由.3.探究当X为多少度时,三角形AOD是等腰三角形

问题描述:

点O是等边三角形ABC内一点,角AOB=110,角BOC=α,将三角形BOC绕点C按顺时针方向旋转
点O是等边三角形ABC内一点,角AOB=110度,角BOC=α,将角形BOC绕点C按顺时针方向旋转60度,得三角形ADC,连接OD.
1.求证三角形COD是等边三角形.
2.当X=150度时,试判断三角形AOD的形状,并说明理由.
3.探究当X为多少度时,三角形AOD是等腰三角形

1、根据旋转的性质,CO=CD,角OCD=60度,所以三角形COD为等边三角形
2、当X=150度时,角ADO也为150度,而角ODC=60度,所以角ODA=90度
三角形AOD为直角三角形
3、角AOC=360-110-X=250-X,角AOD=角AOC-60=190-X
角ADC=角BOC=X,所以,角ODA=X-60
三角形为等腰三角形,当AO=OD进,角AOD+2×角ODA=180
即190-X+2×(X-60)=180,解得X=110度
当AO=AD时,角AOD=角ODA,即190-X=X-60,解得X=125度
当OD=AD时,2×(190-X)+X-60=180,解得X=140
所以当X为110度、125度、140度时,三角形AOD是等腰三角形