如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.

问题描述:

如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.

证明:(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,在△ABF和△AEC中,∵AE=AB∠EAC=∠BAFAF=AC,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如图,根据(1),△ABF≌△...
答案解析:(1)先求出∠EAC=∠BAF,然后利用“边角边”证明△ABF和△AEC全等,根据全等三角形对应边相等即可证明;
(2)根据全等三角形对应角相等可得∠AEC=∠ABF,设AB、CE相交于点D,根据∠AEC+∠ADE=90°可得∠ABF+∠ADM=90°,再根据三角形内角和定理推出∠BMD=90°,从而得证.
考试点:全等三角形的判定与性质.
知识点:本题考查了全等三角形的判定与性质,根据条件找出两组对应边的夹角∠EAC=∠BAF是证明的关键,也是解答本题的难点.